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the formula  C91H158N23024 and crystallizes in space 
group C2221 with Z = 8. There are 138 non-hydrogen 
atoms in the asymmetr ic  unit and the da ta  extend to 
0.8A resolution. Exhaustive trials with various direct- 
methods techniques were unsuccessful.  The weighting 
scheme was used for both triplets and negative quar- 
tets; magic-integer phase permutat ion was used with 
11 reflections in the starting set. A total of  640 phase 
sets was generated,  and the best solution yielded an 
E map in which 52 atoms were clearly visible. The 
structure was completed by s tandard Fourier  tech- 
niques. 

The filtering of  very low-order reflections is, in 
general, much less successful, largely because we are 
trying to encourage direct methods to build a 
molecular  shape as early as possible. However,  in the 
case of WI NTER2 (Table 1), removing all reflections 
with (sin 2 0 ) / A 2 < 0 . 0 1 6  produced an E map  in which 
50 out of  88 non-hydrogen atoms were located. It is 
worth noting that this is the only structure tested that 
has a disordered solvent of appreciable scattering 
power. This type of filter could be of  general applica- 
bility in these circumstances.  

4. Concluding remarks 

This method is simple to apply and can be very 
effective. It requires no extra computing time except 
in cases when the scheme filters so many reflections 
that the convergence map becomes f ragmented with 
many gaps. In these circumstances a larger starting 
set is necessary with a corresponding increase in 
computer  time. There is no clear distinction between 
the efficacy of  the weighting scheme or the cut-off 
method - sometimes one technique works and some- 
times the other, as is the nature of  direct methods.  

Because of  the small associated overheads,  we recom- 
mend this technique as a routine option to be used 
in cases of  difficulty. 
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Abstract 

Recent advances describing X-ray line profiles 
analytically, in terms of  a minimum number  of  param- 
eters, are related to a theory based upon correlated 
dislocations. It is shown that a multiple convolution 
approach,  based upon the War ren -Averbach  ( W - A )  
analysis, leads to a form that closely approximates  

the strain coefficient obtained by Krivoglaz, 
Mar tynenko & Ryaboshopka  [Phys. Met.  Metall. 
(1983), 55, 1-12]. This connection enables one to 
determine the dislocation density and the ratio of  the 
correlation range parameter  to the mean particle size. 
These two results are obtained most accurately from 
previous analytical  approaches  which make  use of  a 
statistical least-squares analysis. The W - A  Fourier- 
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series approach provides redundant information and 
does not focus on the critical parameters that relate 
to dislocation theory. Results so far are limited to 
b.c.c, materials. Results for cold-worked W, Mo, Nb, 
Cr and V are compared with highly imperfect sput- 
tered films of Mo. A major difference is relatable to 
higher correlation of dislocations in cold-worked 
metals than is found in sputtered films deposited at 
low temperatures. However, in each case, the disloca- 
tion density is high. 

1. Introduction 

The analysis of X-ray diffraction line shapes using 
the Warren & Averbach (W-A) theory (Warren, 
1959), was initially developed with the goal of obtain- 
ing experimental results with a minimum of a priori 
assumptions. Its popularity and existence dating back 
to the 1950's have resulted in a vast accumulation of 
data which has long since allowed those few assump- 
tions inherent in the development to be examined 
critically. It has been recognized that the expansion 
of strain terms in this development must involve small 
quantities or else the strains should be describable 
by a Gaussian distribution. If the latter is true, the 
strain term becomes rigorous. The latter appears to 
have experimental validity at least over a limited 
range of those crystal distances that dominate the 
shape of a diffraction peak. 

The results obtained from the W-A analysis are 
limited to particle size and strain, which do not relate 
directly to dislocation theory. Several papers have 
attempted to fill this gap. However, the treatment of 
displacements from dislocation fields presents 
difficulties and requires simplifying assumptions if 
useful results are to be obtained. Wilkens (1970) has 
developed an expression involving the dislocation 
density nd and a cut-off radius which appears to 
provide a description of certain profiles. The use of 
a cut-off radius places a limit on the range of 
the distortion field. More recently, Krivoglaz, 
Martynenko & Ryaboshopka (1983) have added to 
the dislocation approach by introducing correlation 
between dislocations within each parallel array. This 
development resulted in the introduction of a screen- 
ing parameter Rc which determines the rate at which 
the dislocation pair probability falls off with distance. 
The problem of accounting for the interactions 
between non-parallel arrays has not been treated. 
However, this treatment appears to be the most highly 
developed approach and deserves a critical quantita- 
tive examination in terms of reliable line profile data. 

Houska & Smith (1981) eliminated the need for 
fitting profiles by means of the usual Fourier trans- 
form, and instead developed a statistical analytical 
fitting procedure. This was later extended into an 
exact analytical expression by Rao & Houska 
(1986b), who found excellent numerical agreement 

with the prior development. Either approach provides 
a statistical fit of line profile data which allows a 
confidence level to be assessed for the critical param- 
eters, i.e. two root mean square strain parameters and 
particle size. The analytical functions allow profiles 
to be constructed without troublesome termination 
errors and the associated oscillations that are found 
in synthesizing the Fourier series after applying the 
Stokes correction. This can be a serious problem when 
one encounters overlapping profiles typically found 
in powder patterns. 

Our primary goal is to link the most recent dis- 
location field approach, based upon correlated dislo- 
cations, with our statistical-analytical (S-A) 
approaches. This ultimately provides the degree of 
pair correlation between dislocations and their 
density. Examples are given using existing data from 
b.c.c, cold-worked metals, and imperfect sputtered 
films containing a high density of dislocations. 

2. Theory 

Line shapes from statistical treatment 

The shape of a diffraction line can be described by 

P'(h3) = Yo[1+2,=1 ~ ancos[27rn(h3-1)]], (1) 

where h 3 is the usual reciprocal-space variable given 
by h3=2(d)s in  0/,L (d) is the average interplanar 
spacing for (001) planes, L = n(d) is a column dis- 
tance, 0 is the angle of incidence and scattering, ,~ is 
the wavelength, and Yo is a scaling constant. 

The overall Fourier coefficient is given by 

A, (A~)~( ' "~ s o ,  u ,2 = Ac) A , (A,  ) (A , )  (2) 

with 

(At°)" =[exp (-2,n'2(e~o)12)] " (3a) 

(A~)":=[exp(-2rr2(e2ts)12)] "~. (3b) 

e lo) parameter is relatable to A mean-square strain ( 2 
(e~v) to Gaussian-like Cauchy-like profiles and 2 

profiles. 
The particle size coefficient, based upon coherent 

spherical regions, is given by 

AS=l -n /Ns+(a /27 ) (n /N3)  3, n<3N3, (4a) 

A s = 0 ,  n>3N3, (4b) 

where N3 is the average number of unit cells per 
column. The first two terms in (4a) represent the 
fraction of nth neighbors for columns of height N3. 
The cubic term allows for the distribution of heights 
within a sphere of diameter ~N3. As in W-A theory, 
we assume that within a coherent region or particle 
the boundary is well defined or discrete. That is, 
a pair of atoms is either inside or outside the co- 
herent region. This cut-off becomes less clear for a 



SATISH RAO AND C. R. HOUSKA 1023 

distribution of nearly random dislocations in a crystal 
without boundaries. 

The first of the instrumental coefficients is relatable 
to a pure Cauchy profile and is defined by 

A~, = exp (-2rra~),  (5a) 

where av represents a shape-fitting parameter. The 
corresponding Gaussian coefficient is 

a ~  = exp (-Tra~). (5b) 

By multiplying Fourier coefficients according to 
(2), the strain, particle size, and instrumental contri- 
butions become convoluted to provide a line profile 
that can be directly related to experimental results. 

Equation (1) is written more conveniently as an 
integral. 

3/2 

P'(h°) f 
~ 3 Y o -  [ 1 - u + } u  3] 

o 

× exp [ - ( y u  +/3u2)] cos 27rh°u du, (6) 

with 

u = n / N 3 ,  h °= N3h3, (7a) 

Y = 2 7rN3( a~, + 7r<e~o>l 2) (7 b ) 

and 

/3 = 7rN~(a~ + 2rr(e2,)12). (7e) 

All parameters contributing toward a Cauchy profile 
are located in y while those that are Gaussian are 
found in/3. The parameters a~ and a s are obtainable 
from profiles that contain only instrumented broaden- 
ing. As was stated previously, (6) has been evaluated 
in two ways which give nearly identical numerical 
results. These analytical forms enable one to carry 
out a least-squares fit of the measured profiles. Also, 
the construction of misfit surfaces enables one to 
establish confidence levels for both strain and particle 
size parameters. The latter is not readily carried out 
from the lengthy Fourier series described by (1). 

Strain information is expressed in terms of mean 
square strain for different distances n(d) along direc- 
tions normal to the reflecting planes. This has been 
simplified to 

(e]) = (I/n)(e~o)+(e2, u) (8) 

for those distances that influence a Bragg profile. The 
profile is largely shaped by the relative displacements 
of pairs of cells within the range 

N3/ lO< n < N 3 . (9) 

The parameters (e2o) and ( 2 elu)  allow (e2,) to be 
evaluated over this limited range. 

Equation (8) presents the results in a purely statis- 
tical form and does not provide a basic connection 

with dislocation fields. The connection is made later 
by using a Fourier coefficient of the form 

AL = 1-~--~+~-~ ~ ~  

× e x p [ ( - C , L + C 2 L Z ) l  2] (10) 
with 

C,= 21r2(e~o)/(d) 

Note that (d) is the average spacing for the first order 
of a set of reflections (h~kl l~) . . .  (nh~, nk~, nl~) and 
that this requires one index according to (00l). The 
exponential term in (10) is the strain term, A~, which 
will be treated in the next section. 

Correlated dislocations 

Krivoglaz et al. (1983) have simplified the calcula- 
tion of column strain by considering a parallel array 
of correlated dislocations. One type of array will have 
parallel core orientations with Burgers vectors that 
are both parallel and antiparallel in equal numbers. 
Screw and edge arrays are treated separately. 
Although there are usually several distinguishable 
arrays, each is considered independently. The 
orientation of the core and Burgers vector are deter- 
mined from crystallographic considerations, i.e. 
planes and lines of close packing.* Within one array, 
the average displacement for each pair of cells is 
determined by allowing individual dislocations as 
well as correlated pairs to take on all parallel positions 
consistent with three long-range distribution func- 
tions. The final Fourier coefficient is determined by 
averaging the cell displacements over crystallographi- 
cally distinguishable arrays with equal probability for 
both screw and edge types. 

Pair probabilities Coo, are defined relative to a ran- 
dom distribution according to 

Coo ,= Poo,(r)-C,,Co,.  (11) 

Here a designates both the core and Burgers vector 
for one member of a pair, while a '  designates a second 
parallel dislocation at a radial vector distance r but 
with an antiparallel Burgers vector. Co = probability 
of finding one type of dislocation a in a given 
position. With a Gaussian pair probability, e(r) is 
given by 

e ( r ) = ( C A / 4 ~ ' R 2 c ) e x p ( - r 2 / g 2 ~ )  (12) 

with C = Co + Ca,, where we note that Co = Co,. The 
total probability C is related to the dislocation density 
by nd= C / A ,  with A = area per atom on planes per- 
pendicular to the dislocation cores [i.e. (111) for 
b.c.c.]. 

* For example in b.c.c, materials there are four arrays for screw 
dislocations and 12 arrays for the edge dislocation. 
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One finds that the distribution is long range and 
best scaled in units of (L). An additional and impor- 
tant condition for a cylindrical array requires 

217" ~ e (r ) r  dr = CA~4. (13) 

This requirement causes the long-range displacement 
term to go to zero making the results independent of 
the shape of the crystal and the nature of the distribu- 
tion of stress on its surface. 

These basic guidelines lead one to the following 
result for the exponent of the strain coefficient. 

A ° = e  - r  (14a) 

with 

and 

- T =  K(crREnd)lE(X E In X) 

K = ½ix)(b/(d))2((~)/~:,)E 

X=((I(~))LIR< 

(14b) 

~ '=  1-344. 

We have rearranged terms and defined a variable X 
which is convenient in the analysis. Quantities 
appearing in K will be defined in the following dis- 
cussions dealing with b.c.c, materials, g depends upon 
the orientation of the dislocation and its Burgers 
vector relative to the diffraction vector Sx. The result 
obtained for one array of screw dislocations is 

Xs = s ine 4, cOS2 4, (15) 

and for the edge 

XE = [ 1 - 4 v + 8 v 2 + 4 ( 1 - 2 v )  sin 2 ~] 

xs in  4 4 , / [8 (1 -  v) 2] (16) 

where v = Poisson's ratio. 
The angles ¢ and 4, are defined in Figs. l ( a )  and 

(b). For screw dislocations, the maximum cell dis- 
placements occur for columns oriented at 4, =45°; 
while for pure edge dislocations, the maximum occurs 
when the core is perpendicular to SA and parallel to 

$X 

- - ~ - - - - - - - . ~  - - - - - . 0 - - - ~  T s (core) and b 

(a) 

r E (core) 

(b)  

Fig. 1. Pictorial definition of angles ¢ and ~b found in equations 
(15) and (16), for (a) screw and (b) edge dislocations. 

Table 1. Separate listings o f  average (X) and (~) for  
screw (S) ,  edge (E)  and the weighted average over 

edge and screw ( SE ) 

hkl 12 (Xs) (xe) (Xse) (~s) (~E) (~SE) 
110 2 0"111 0.184 0"166 3"46 2"17 2"37 
200 4 0"222 0-155 0.172 2.45 2"33 2"39 
211 6 0"I l l  0"184 0"166 2-71 1'97 2"08 
220 8 0"111 0.184 0-166 2"87 1"80 1"97 
301 10 0"182 0.164 0"169 2"34 1"98 2"06 

Averages over hkl 0.168 2.174 

the Burgers vector. Because several equivalent crys- 
tallographic directions are possible, an average is 
taken over all arrays. If these have equal probability, 
one obtains 

(Xs) = 2[ 1 - 2F(hkl)]  (17) 

for screw and 

(XE) = [144(1 -- v)2] - '  

x [25 -- 68 ~,+ 72v2 + (19-- 44~ + 24u2)F] 
(18) 

for edge with 

hEkE + kElE+ lEh 2 
F =  (hE+k2+lE) 2 . (19) 

Since there are three times as many arrays of edge 
dislocations as screw in the b.c.c, the weighted average 
over both types is 

(Xse) = ~(XE) + ~(Xs). (20) 

Individual values of X are listed in Table 1 for W and 
Mo and vary with hkl over this limited range. This 
variation is well within any experimental errors 
encountered in line shape analyses. If one examines 
variations due to Poisson ratio for other b.c.c. 
materials, one finds about 10% change in (XsE) which 
is within the limitations of both theory and the data 
when taken equal to 0.168. 

The quantity (~:) appears not only in K but also in 
the variable X. It is obtained by taking an average 
for all dislocation arrays with respect to each column 
direction, i.e. [110], [200] etc. For one orientation of 
screw dislocation array, this has been defined as* 

In ~ = l n 2 - 1 n l s i n  4,1, p = l  (21) 

In ~: = 1.116 - In Isin q'l - In p + 1/3p E, p > 1. (22) 

For a random positioning of dislocations onto planes 
and directions of highest packing, (¢) depends purely 
upon crystallographic considerations and p. The latter 
is given by 

p = S a  .b (23) 

* Equations (21) and (22) were first applied to edge dislocations 
by Wilkens (1970). Calculations for (~se), as given in Table 1, were 
carried out on this basis. 
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Table 2. Listing of  (¢"X 2) for W and Mo 

hkl 12o ( ~" X 2) 
i i0 2 0-0095 
200 4 0"0072 
211 6 0'0253 
220 8 0"0262 
310 l0 0'0185 

with the magnitude of the diffraction vector in 
reciprocal space given by ]Sal = l/(d). Table 1 pro- 
vides a listing of five low-order peaks that are nor- 
mally in a range where (14b) is applicable for b.c.c. 
materials. For this restricted listing, one finds about 
a +10% variation of (s c) with hkl after averaging over 
both screw and edge arrays. Therefore, we treat it as 
a constant equal to 2.174. 

With nd representing the number of dislocations 
per unit area, the product (TrR2cnd) is the number of 
dislocations in a circular range of radius Re. Both 
screw and edge with all orientations are considered. 

The correction term 

r ,, I" aT'(L)=2(TrR2cnd)L-~] L--(-] (('x2>X' (24) 

to (14) has been fully evaluated only for screw dislo- 
cations. This contains terms already defined except 
for 

= 8 - 2  ( - l y p + p 2  + [ l + ( - 1 ) P + ' l l n 2  

_[1 +(_l)p+,]  1 
k=, 2 k ~ - l  " (25)  

The average (~:"X 2> is given in Table 2 for b.c.c, and 
those reflections appropriate to this approach. 
Without a comparable development for edge disloca- 
tions, (24) is useful primarily for estimating the 
maximum value of X over which (14b) is valid. Under 
these conditions, the fractional correction at Xm is 
approximately 

aT,_4r<e>] , (26) 
T L-(J ix) In X . ,  

where X, ,=(~ ' / (~) ) ( (L) /Rc)  and (L)= N3(d ). Fig. 2 
illustrates the magnitude of (26) as a function of Xm 
for 220. We will return to this restriction on X,, when 
considering results for tungsten. 

Relationships between analytical and 
correlated-dislocations theories 

So far, there is a gap between the correlated-dislo- 
cation approach and the W-A approach. This is best 
closed by beginning with our analytical treatment. 

Sample information is contained in two strain param- 
eters (e2o) and 2 (e,u) and the average column height 
(L). These quantities may be simply related to the 
dislocation density and the range parameter Rc. The 
average column height is an additional parameter not 
explicitly considered in the dislocation approaches. 
Normally, we think of the average column height as 
the mean size of a subgrain having some boundary 
feature that sharply destroys the periodicity within a 
crystal. In heavily cold-worked metals, a well defined 
sharp interface may not exist. Instead, one might have 
a diffuse boundary extending over a range of inter- 
atomic distances that is not likely to be perfectly 
repetitive but, rather, statistical, having an irregular 
spacing. Krivoglaz et al. (1983) did not treat distribu- 
tions that lead directly to such a particle size term. 
Perhaps the answer to the particle size question lies 
in a further development in the antiscreening model 
taken with an appropriate distribution function. The 
evidence for a separate particle size term is sufficiently 
convincing to proceed with this explicitly included 
in the profile analysis for either sharp or diffuse 
boundaries. 

I XZ,~nX [ 

018 

0.16 

014 

012 

010 

008 

0 06 

004 

002 

/ 
/ 

v 

Inflection/ 
P o l n /  

_ 

. /  

,.o / 
-(S 

(¥,),o' 
220 

40 
W 

7/ Cr 35 

/ 25 

/ 

' , ' , ' , ' , ' o 
0 0. I 0.2 03. 04 0.5 06 

X 

Fig. 2. Exponential shape function X21n X found in Fourier 
coefficient and first-order correction for 220. Cluster locations 
of cold-worked filings and sputtered films relative to inflection 
point. References: W (McKeehan & Warren, 1953); Cr, Nb, V 
(Aqua & Wagner, 1964); Mo (Despujols & Warren, 1958); Mo 
(S1, $2) (Houska & Smdth, 1981). 
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It can be shown that the function X 2 In X in (14b) 
can be well represented by a power series up to the 
quadratic term. This has already been expressed in 
the exponential strain term as C,L+C2L 2 [(10)]. 
Here, the expansion is written in terms of the length 
L between pairs of cells along a column. An optimum 
least-squares fit gives the form 

2 1 2 

x [ 0 . 6 2 0 X , , X -  (in 1.792Xm)X 2] (27) 

with X,. =(~'/(~))((L)/Rc). Figs. 3 and 4 illustrate 
fits for X,. = 0-03 and 0.37 which are well Within the 
error of a conventional W-A analysis. 

If like terms are compared in (27) and in the 
equation 

T+ =2 

(28) 

Ix'lnxl 
, i 1 i i 

o o 3  

o 0 2  

o 0 1  

• series opproxlmotlon 

J I I i £ I 

o o o i  0 0 2  0 0 3  

X 

Fig. 3. Least-squares fit of X 2 In X up to Xm = 0.03, with a power 
series up to the quadratic term (C,X + C2X2). 

Ix'/nXl 
0 1 6  i , , , , , , 

014 • 

o l 2  

0 i 0  

0 0 8  

0 o 6  

t ,  r xi i • set,es opproximo{ion 

004 

002 

I l I 
0 01 0 i 2 03{ I 0.4 

X 

Fig. 4. Least-squares fit of X 2 In X up to Xm = 0.37, with a power 
series up to the quadratic term (C, X + C2X2). 

one finds that the dislocation density is given by 

(d) (e~D) 
ne = 20.3 b2(x---- ) (L) (29) 

This varies directly with the strain parameter and 
inversely with the mean particle size. Similarly, for a 
Gaussian distribution, one obtains 

(L)-R~ ( (L)(e2u)~ 
1.10 exp 0.62 ~ ~ - ~ 1 .  (30) 

The range Rc increases relative to (L) as the experi- 
mental quantities (L) and 2 2 (e, u ) / (e lo)  increase. 

3. Applications of expanded analytical 
profile analysis 

Calculations were carried out for several b.c.c. 
materials which include W, Mo, Nb, Cr and V. The 
most extensive data collection, for any one sample, 
is for the W data of McKeehan & Warren (1953), 
which offers a critical test. This is due largely to its 
elastic isotropy which enables data from different 
crystal directions to be interrelated as one data set. 
Molybdenum also provides interesting results 
because data from filings (Despujols & Warren, 1958) 
may be compared with those obtained from films by 
sputter deposition (Houska & Smith, 1981). In these 
cases, profiles from the 110 and 220 reflections have 
been studied with sufficient accuracy to provide 
meaningful results. 

For the following reasons, care must be taken to 
ensure that data sets are examined within a restricted 
range of X values. First of all, corrections introduced 
by the second-order term (ST,) should be kept to a 
small fraction of the first-order term T to conform 
safely with first-order theory. The maximum tolerated 
throughout the fitting procedure is 18% (see Fig. 2). 
The correction at L =  160A using tungsten data 
approaches this value. However, it is likely that the 
error in the distortion coefficient for L/(L) >- 0.8, after 
making the Stokes correction and after separating 
Fourier coefficients, could be at or above the 18% 
level. A second consideration for restricting X is 
related to the power expansion given in (27). A re- 
examination of Fig. 4 shows that (27) provides an 
excellent approximation to (14b) for X,, =0.37.  In 
fact, the series approximation remains good at least 
to X,, = 0-47. With these considerations in mind, we 
truncate the W data at L = 160 ,~ or L/(L) = 0.8. X,, 
is about 0.030 for both sputter-deposited films which, 
of course, gives an excellent fit. 

Calculations for (~:"X2), which appears in the 
second-order correction [(26)], revealed that this term 
more than doubles in going from the 310 to the 222 
reflection. Therefore, taking 12> 10 becomes risky if 
one wishes to conform with the first-order theory. 
Accordingly, the data fits for the distortion 
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coefficients, A~, have been truncated both in L and 
in hkl. Finally, the large displacements in the core 
region of a dislocation have not been included in the 
theory. Only the long-range purely elastic displace- 
ment fields are included. The latter play the major 
role in shaping those portions of profiles that can be 
measured accurately. Core-region displacements 
could cause problems in the separation procedure of 
the Fourier coefficients normally employed in the 
W-A analysis at the lowest L values. Because of these 
problems, values of L at and below 40 ,~ are discarded 
in the fitting procedure. 

An examination of Fig. 5 shows that the fit to theory 
is good over 30 data points which encompass five hkl 
reflections. The parameters L, (e~o) and (e 2 l u) giving 
this fit are listed in Table 3, along with six other b.c.c. 
materials. The extended tabulation of experimental 
data for elastically anisotropic materials is based 
upon the analyses of (110) and (220) planes using 
published data referenced in the caption. In all cases, 
L~ R~ locates X,, at or below the 0.37 limit used for 
W. This may be seen in Fig. 2 as well as a clustering 
of data obtained from 'cold-worked' filings above 
X,, = 0.22 (inflection point) and below for samples 
prepared by sputtering. 

If one considers the difficulties in obtaining accu- 
rate values of A~, the spread in Rc/(L) obtained from 
(30) for V, Mo, Cr and Nb (data from Aqua & 
Wagner, 1964) is not likely to be significant. However, 
differences in the dislocation densities na are more 
meaningful. 

4. Discussion 

Our results have demonstrated that the line shape 
theory as developed by Krivoglaz et al. (1983) and 
our previously developed analytical approaches are 
~ompatible and can explain profiles that vary con- 
tinuously from a Cauchy-like to a Gaussian-like 
shape. The Cauchy-like shape may be related to 
highly clustered unlike dislocations while the 
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Fig. 5. Fit o f  experimental W strain coefficients (McKeehan  & 
Warren, 1953) with correlated dislocation theory (Krivoglaz et  

al., 1983). 

Table 3. Final results of  extended line shape analysis 
giving X,,,, n d and Rc/(L) in terms of  N3, (L), (E21D) 

and 2 (e,u) for seven b.c.c, samples 

n d x 1011 (EID)2 (E2U) 
X,,, N 3 (L(A))  (cm -2) R c / ( L  ) x 104 x 106 

Cr 0-274 140 285 3"67 1.79 2.63 1.47 
V 0.226 93.7 200 6.56 2.17 3.46 4.05 
Mo 0.246 117 260 4.60 1.99 3.30 2-72 
W 0.368 89.4 200 1.53 1.33 0.84 0.29 
Nb 0-295 92.1 215 7-32 1.66 4-56 3.27 
Mo(S1) 0.030 83.6 186 0.92 16 1.88 9.61 
Mo(S2) 0.022 397 884 0.17 22 1.69 2-04 

Gaussian-like shapes relate to more random arrange- 
ments. In terms of the original W-A Fourier 
approach, the shape of a profile depends upon the 
way the mean square strain (e~) varies with distance. 
Linking this dependence with dislocation fields, hav- 
ing a prescribed correlation, provides a fundamental 
connection with basic theory. This extension to our 
analytical profile calculations relates the shapes of 
multiple orders from a set of (hkl) planes to the mean 
particle size, dislocation density and the correlation 
range. 

If subgrain size broadening plays a significant role, 
even though dislocations may be highly clustered, the 
shapes will not be purely Cauchy. The exact shape 
will be influenced by the mean particle size and the 
variance of the size distribution (Rao & Houska, 
1986a). At the other extreme, even though unlike 
dislocations may be distributed randomly, the broad- 
ening is likely to be a mix between the Gaussian, 
which may dominate, some Cauchy, and shaping 
from the subgrain size parameters. 

The results given in Table 3 allow a simple alterna- 
tive explanation of differences observed between 
'cold-worked' fragments and sputtered films. 
Although both may be prepared in highly imperfect 
states, one can explain the differences in terms of 
correlated dislocations. Filings show a high degree 
of clustering (small Rc/(L)), while sputtered films 
show a broad distribution of dislocations (large 
Rc/(L)). These differences can be related to sample 
conditions such as the temperature and local condi- 
tions at which the high-density dislocation structure 
is produced. Fragments produced by filing or grinding 
at room temperature may not be 'cold'. Instead, they 
may be rapidly heated to a high temperature during 
fracture, and rapidly quenched such that dislocations 
are mobile for short periods of time over short dis- 
tances. On the other hand, sputtered films deposited 
onto an unlike substrate at or even somewhat above 
room temperature do not appear to have comparable 
dislocation mobility. Consequently, unlike disloca- 
tion pairs do not become highly correlated. 

This research was sponsored by the Office of Naval 
Research Grant No. N00014-83-K-0750, P00004. The 
authors would like to express their thanks to Professor 
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Abstract 

The polytypic stacking sequences of Sb507I (SOI) 
which are possible up to a ten-module period are 
derived together with their most probable space 
groups. It is found that the driving force of the revers- 
ible structural phase transition occurring in all poly- 
types is systematically modified by the polytypic 
degree of freedom. By defining only three interlayer 
interactions - each realized in a pure way by a simple 
polytype - the transition temperature Tc of any stack- 
ing sequence can be predicted. The indicatrix orienta- 
tion of SOl crystals depends on the proportion of + 
and - modules in a sequence. The extinction angle 
a is calculated on the basis of experimental data. The 
independent variables Tc and a are used for the 
identification of six higher polytypes of Sb507I. 

1. Introduction 

The determination of polytypic structures from bulk 
physical properties alone is restricted by severe condi- 
tions. The polytypic degree of freedom should 
influence several properties of a compound in a 
different manner. Of course, the effects would have 
to be measurable with a high accuracy in order to 
detect the tiny differences between long stacking 
sequences. Large samples without stacking faults are 
needed. In a few cases optical studies have proved 
to be useful. In ZnS polytypes, for example, the 
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number of hexagonal stackings per identity period 
could be derived from the birefringence (Brafman & 
Steinberger, 1966). 

Among all the polytypic structures antimony(III) 
oxide iodide, SbsO7I (SOI), has a unique position 
(Nitsche, Kr~imer, Schuhmacher & Bussmann, 1977). 
Each modification undergoes a reversible structural 
phase transition which does not interfere with the 
polytypic degree of freedom itself. The polytypism, 
however, influences the properties of SOI funda- 
mentally. This is indicated by the individual transition 
temperatures (438-< To- 481 K) of the eight poly- 
types distinguished so far and, more clearly, by the 
fact that some of them show pure ferroelasticity 
whereas others combine ferroelastic and ferroelectric 
behaviour in the low-symmetric phase. In principle, 
any ferroic property of SOI could be checked to see 
whether it contributes to the identification of the 
higher polytypes. The studies performed until now 
do not suffice for such an analysis. 

This work was stimulated by the observation that 
the polytypic modifications of SOI differ in their 
crystal optics (Nitsche, Kr~imer, Schuhmacher & 
Bussmann, 1977). We analyse the differences in detail. 
It is demonstrated that Sb507I offers for the first time 
the chance to attack successfully the identification 
problem of a complex polytypic structure simply by 
measuring bulk physical properties of the system. We 
first describe the structure of SOl and discuss suitable 
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